Publication:

Computer vision and machine learning approaches for metadata enrichment to improve searchability of historical newspaper collections

 
dc.contributor.authorDilawar, Ali
dc.contributor.authorMilleville, Kenzo
dc.contributor.authorVerstockt, Steven
dc.contributor.authorVan de Weghe, Nico
dc.contributor.authorChambers, S.
dc.contributor.authorBirkholz, J.M.
dc.contributor.imecauthorDilawar, Ali
dc.contributor.imecauthorMilleville, Kenzo
dc.contributor.imecauthorVerstockt, Steven
dc.contributor.orcidextVerstockt, Steven::0000-0003-1094-2184
dc.contributor.orcidextvan de Weghe, Nico::0000-0002-5327-4000
dc.contributor.orcidextChambers, Sally::0000-0002-2430-475X
dc.contributor.orcidimecMilleville, Kenzo::0000-0002-9765-6000
dc.contributor.orcidimecVerstockt, Steven::0000-0003-1094-2184
dc.date.accessioned2024-09-24T08:21:05Z
dc.date.available2023-03-27T08:24:27Z
dc.date.available2024-09-24T08:21:05Z
dc.date.embargo9999-12-31
dc.date.issued2024
dc.description.wosFundingTextThis research has been funded by the DATA-KBR-BE project (2020-2024) financed by the Belgian Science Policy Office (Belspo) as part of the Belgian Research Action through Interdisciplinary Networks, BRAIN 2.0 program which is coordinated by KBR. The authors would like thank the KBR for enabling access to the historical newspaper data for this research and Alec Van den broeck for his assistance with the NER evaluation.
dc.identifier.doi10.1108/JD-01-2022-0029
dc.identifier.issn0022-0418
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/41395
dc.publisherEMERALD GROUP PUBLISHING LTD
dc.source.beginpage1031
dc.source.endpage1056
dc.source.issue5
dc.source.journalJOURNAL OF DOCUMENTATION
dc.source.numberofpages26
dc.source.volume80
dc.subject.keywordsDOCUMENT STRUCTURE
dc.subject.keywordsRECOGNITION
dc.subject.keywordsFEUILLETON
dc.subject.keywordsCHALLENGES
dc.subject.keywordsALGORITHMS
dc.title

Computer vision and machine learning approaches for metadata enrichment to improve searchability of historical newspaper collections

dc.typeJournal article
dspace.entity.typePublication
Files

Original bundle

Name:
DS608.pdf
Size:
11.17 MB
Format:
Unknown data format
Description:
Publication available in collections: