Publication:

Using the Polar Transform for Efficient Deep Learning-Based Aorta Segmentation in CTA Images

 
dc.contributor.authorBencevic, Marin
dc.contributor.authorHabijan, Marija
dc.contributor.authorGalic, Irena
dc.contributor.authorBabin, Danilo
dc.contributor.imecauthorBabin, Danilo
dc.contributor.orcidimecBabin, Danilo::0000-0002-2881-6760
dc.date.accessioned2023-06-15T12:04:17Z
dc.date.available2023-03-09T03:35:08Z
dc.date.available2023-06-15T12:04:17Z
dc.date.embargo2022-09-14
dc.date.issued2022
dc.description.wosFundingTextThis work was supported in part by Faculty of Electrical Engineering, Computer Science and Information Technology Osijek grant "IZIP 2022" and by the Croatian Science Foundation under Project UIP-2017-05-4968.
dc.identifier.doi10.1109/ELMAR55880.2022.9899786
dc.identifier.eisbn978-1-6654-7003-2
dc.identifier.issn1334-2630
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/41251
dc.publisherIEEE
dc.source.beginpage191
dc.source.conferenceELMAR 64th International Symposium
dc.source.conferencedateSEP 12-14, 2022
dc.source.conferencelocationZadar
dc.source.endpage194
dc.source.journalna
dc.source.numberofpages4
dc.title

Using the Polar Transform for Efficient Deep Learning-Based Aorta Segmentation in CTA Images

dc.typeProceedings paper
dspace.entity.typePublication
Files

Original bundle

Name:
Using_the_Polar_Transform_for_Efficient_Deep_Learning-Based_Aorta_Segmentation_in_CTA_Images.pdf
Size:
661.39 KB
Format:
Adobe Portable Document Format
Description:
Accepted version
Publication available in collections: