Publication:

An interpretable deep learning approach for lesion detection and segmentation on whole-body [18F]FDG PET/CT

Date

 
dc.contributor.authorDirks, Ine
dc.contributor.authorKeyaerts, Marleen
dc.contributor.authorNeyns, Bart
dc.contributor.authorVandemeulebroucke, Jef
dc.contributor.imecauthorDirks, Ine
dc.contributor.imecauthorVandemeulebroucke, Jef
dc.contributor.orcidimecVandemeulebroucke, Jef::0000-0001-5714-3254
dc.date.accessioned2024-08-29T10:21:15Z
dc.date.available2024-06-15T17:25:03Z
dc.date.available2024-08-29T10:21:15Z
dc.date.issued2024
dc.identifier.doi10.1117/12.3005815
dc.identifier.eisbn978-1-5106-7157-7
dc.identifier.isbn978-1-5106-7156-0
dc.identifier.issn1605-7422
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/44036
dc.publisherSPIE-INT SOC OPTICAL ENGINEERING
dc.source.beginpageArt. 1292617
dc.source.conferenceConference on Medical Imaging - Image Processing
dc.source.conferencedateFEB 19-22, 2024
dc.source.conferencelocationSan Diego
dc.source.journalProceedings of SPIE
dc.source.numberofpages10
dc.source.volume12926
dc.title

An interpretable deep learning approach for lesion detection and segmentation on whole-body [18F]FDG PET/CT

dc.typeProceedings paper
dspace.entity.typePublication
Files
Publication available in collections: