Publication:
Jaxley: differentiable simulation enables large-scale training of detailed biophysical models of neural dynamics
| cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
| cris.virtual.orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
| cris.virtualsource.department | cce61459-f9cc-461b-ad50-df59f76c7b2e | |
| cris.virtualsource.orcid | cce61459-f9cc-461b-ad50-df59f76c7b2e | |
| dc.contributor.author | Deistler, Michael | |
| dc.contributor.author | Kadhim, Kyra L. | |
| dc.contributor.author | Pals, Matthijs | |
| dc.contributor.author | Beck, Jonas | |
| dc.contributor.author | Huang, Ziwei | |
| dc.contributor.author | Gloeckler, Manuel | |
| dc.contributor.author | Lappalainen, Janne K. | |
| dc.contributor.author | Schroeder, Cornelius | |
| dc.contributor.author | Berens, Philipp | |
| dc.contributor.author | Goncalves, Pedro | |
| dc.contributor.author | Macke, Jakob H. | |
| dc.date.accessioned | 2026-01-26T14:45:10Z | |
| dc.date.available | 2026-01-26T14:45:10Z | |
| dc.date.createdwos | 2025-11-18 | |
| dc.date.issued | 2025 | |
| dc.description.abstract | Biophysical neuron models provide insights into cellular mechanisms underlying neural computations. A central challenge has been to identify parameters of detailed biophysical models such that they match physiological measurements or perform computational tasks. Here we describe a framework for simulating biophysical models in neuroscience—Jaxley—which addresses this challenge. By making use of automatic differentiation and GPU acceleration, Jaxley enables optimizing large-scale biophysical models with gradient descent. Jaxley can learn biophysical neuron models to match voltage or two-photon calcium recordings, sometimes orders of magnitude more efficiently than previous methods. Jaxley also makes it possible to train biophysical neuron models to perform computational tasks. We train a recurrent neural network to perform working memory tasks, and a network of morphologically detailed neurons with 100,000 parameters to solve a computer vision task. Jaxley improves the ability to build large-scale data- or task-constrained biophysical models, creating opportunities for investigating the mechanisms underlying neural computations across multiple scales. | |
| dc.description.wosFundingText | Open access funding provided by Eberhard Karls Universitat Tubingen. | |
| dc.identifier.doi | 10.1038/s41592-025-02895-w | |
| dc.identifier.issn | 1548-7091 | |
| dc.identifier.pmid | MEDLINE:41233544 | |
| dc.identifier.uri | https://imec-publications.be/handle/20.500.12860/58736 | |
| dc.language.iso | eng | |
| dc.provenance.editstepuser | greet.vanhoof@imec.be | |
| dc.publisher | NATURE PORTFOLIO | |
| dc.source.beginpage | 2649 | |
| dc.source.endpage | 2657 | |
| dc.source.issue | 12 | |
| dc.source.journal | NATURE METHODS | |
| dc.source.numberofpages | 27 | |
| dc.source.volume | 22 | |
| dc.title | Jaxley: differentiable simulation enables large-scale training of detailed biophysical models of neural dynamics | |
| dc.type | Journal article | |
| dspace.entity.type | Publication | |
| imec.internal.crawledAt | 2025-11-20 | |
| imec.internal.source | crawler | |
| Files | Original bundle
| |
| Publication available in collections: |