Publication:

Jaxley: differentiable simulation enables large-scale training of detailed biophysical models of neural dynamics

 
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.departmentcce61459-f9cc-461b-ad50-df59f76c7b2e
cris.virtualsource.orcidcce61459-f9cc-461b-ad50-df59f76c7b2e
dc.contributor.authorDeistler, Michael
dc.contributor.authorKadhim, Kyra L.
dc.contributor.authorPals, Matthijs
dc.contributor.authorBeck, Jonas
dc.contributor.authorHuang, Ziwei
dc.contributor.authorGloeckler, Manuel
dc.contributor.authorLappalainen, Janne K.
dc.contributor.authorSchroeder, Cornelius
dc.contributor.authorBerens, Philipp
dc.contributor.authorGoncalves, Pedro
dc.contributor.authorMacke, Jakob H.
dc.date.accessioned2026-01-26T14:45:10Z
dc.date.available2026-01-26T14:45:10Z
dc.date.createdwos2025-11-18
dc.date.issued2025
dc.description.abstractBiophysical neuron models provide insights into cellular mechanisms underlying neural computations. A central challenge has been to identify parameters of detailed biophysical models such that they match physiological measurements or perform computational tasks. Here we describe a framework for simulating biophysical models in neuroscience—Jaxley—which addresses this challenge. By making use of automatic differentiation and GPU acceleration, Jaxley enables optimizing large-scale biophysical models with gradient descent. Jaxley can learn biophysical neuron models to match voltage or two-photon calcium recordings, sometimes orders of magnitude more efficiently than previous methods. Jaxley also makes it possible to train biophysical neuron models to perform computational tasks. We train a recurrent neural network to perform working memory tasks, and a network of morphologically detailed neurons with 100,000 parameters to solve a computer vision task. Jaxley improves the ability to build large-scale data- or task-constrained biophysical models, creating opportunities for investigating the mechanisms underlying neural computations across multiple scales.
dc.description.wosFundingTextOpen access funding provided by Eberhard Karls Universitat Tubingen.
dc.identifier.doi10.1038/s41592-025-02895-w
dc.identifier.issn1548-7091
dc.identifier.pmidMEDLINE:41233544
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/58736
dc.language.isoeng
dc.provenance.editstepusergreet.vanhoof@imec.be
dc.publisherNATURE PORTFOLIO
dc.source.beginpage2649
dc.source.endpage2657
dc.source.issue12
dc.source.journalNATURE METHODS
dc.source.numberofpages27
dc.source.volume22
dc.title

Jaxley: differentiable simulation enables large-scale training of detailed biophysical models of neural dynamics

dc.typeJournal article
dspace.entity.typePublication
imec.internal.crawledAt2025-11-20
imec.internal.sourcecrawler
Files

Original bundle

Name:
s41592-025-02895-w.pdf
Size:
6.7 MB
Format:
Adobe Portable Document Format
Description:
Published
Publication available in collections: