Publication:

Poster Abstract: Adapting Pretrained Features for Efficient Unsupervised Acoustic Anomaly Detection

 
dc.contributor.authorLiu, Zhaoyi
dc.contributor.authorMichiels, Sam
dc.contributor.authorJoosen, Wouter
dc.contributor.authorHughes, Danny
dc.contributor.imecauthorJoosen, Wouter
dc.date.accessioned2022-11-15T10:47:38Z
dc.date.available2022-09-29T02:51:21Z
dc.date.available2022-11-15T10:47:38Z
dc.date.issued2022
dc.description.wosFundingTextThis research is partially funded by the Research Fund KU Leuven, and by imec and Flanders Innovation Entrepreneurship (VLAIO) in the context of the WiPeR project.
dc.identifier.doi10.1109/IPSN54338.2022.00063
dc.identifier.eisbn978-1-6654-9624-7
dc.identifier.issnna
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/40520
dc.publisherIEEE COMPUTER SOC
dc.source.beginpage525
dc.source.conference21st ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)
dc.source.conferencedateMAY 04-06, 2022
dc.source.conferencelocationMilano, Italy
dc.source.endpage526
dc.source.journalna
dc.source.numberofpages2
dc.title

Poster Abstract: Adapting Pretrained Features for Efficient Unsupervised Acoustic Anomaly Detection

dc.typeProceedings paper
dspace.entity.typePublication
Files
Publication available in collections: