Publication:

On suitability of the reinforcement learning methodology in dynamic, heterogeneous, self-optimizing networks

Date

 
dc.contributor.authorRovcanin, Milos
dc.contributor.authorDe Poorter, Eli
dc.contributor.authorMoerman, Ingrid
dc.contributor.authorDemeester, Piet
dc.contributor.imecauthorDe Poorter, Eli
dc.contributor.imecauthorMoerman, Ingrid
dc.contributor.imecauthorDemeester, Piet
dc.contributor.orcidimecDe Poorter, Eli::0000-0002-0214-5751
dc.contributor.orcidimecMoerman, Ingrid::0000-0003-2377-3674
dc.contributor.orcidimecDemeester, Piet::0000-0003-2810-3899
dc.date.accessioned2021-10-21T11:34:52Z
dc.date.available2021-10-21T11:34:52Z
dc.date.embargo9999-12-31
dc.date.issued2013
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/23019
dc.identifier.urlhttp://rd.springer.com/chapter/10.1007%2F978-3-642-40316-3_15#
dc.source.beginpage162
dc.source.conference13th International Conference on Next Generation Wired/Wireless Advanced Networking - NEW2AN
dc.source.conferencedate28/08/2013
dc.source.conferencelocationSint-Petersburg Russia
dc.source.endpage175
dc.title

On suitability of the reinforcement learning methodology in dynamic, heterogeneous, self-optimizing networks

dc.typeProceedings paper
dspace.entity.typePublication
Files

Original bundle

Name:
30639.pdf
Size:
742.03 KB
Format:
Adobe Portable Document Format
Publication available in collections: