Publication:

Semi-supervised constrained clustering: an in-depth overview, ranked taxonomy and future research directions

 
dc.contributor.authorGonzalez-Almagro, German
dc.contributor.authorPeralta, Daniel
dc.contributor.authorDe Poorter, Eli
dc.contributor.authorCano, Jose-Ramon
dc.contributor.authorGarcia, Salvador
dc.contributor.imecauthorPeralta, Daniel
dc.contributor.imecauthorDe Poorter, Eli
dc.contributor.orcidimecPeralta, Daniel::0000-0002-7544-8411
dc.contributor.orcidimecDe Poorter, Eli::0000-0002-0214-5751
dc.date.accessioned2025-03-14T10:18:27Z
dc.date.available2025-03-13T18:38:20Z
dc.date.available2025-03-14T10:18:27Z
dc.date.issued2025
dc.description.wosFundingTextThis study has been funded by the research projects PID2020-119478GB-I00, A-TIC-434-UGR20 and PREDOC_01648.
dc.identifier.doi10.1007/s10462-024-11103-8
dc.identifier.issn0269-2821
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/45387
dc.publisherSPRINGER
dc.source.beginpage1
dc.source.endpage127
dc.source.issue5
dc.source.journalARTIFICIAL INTELLIGENCE REVIEW
dc.source.numberofpages127
dc.source.volume58
dc.subject.keywordsNONNEGATIVE MATRIX FACTORIZATION
dc.subject.keywordsINSTANCE-LEVEL CONSTRAINTS
dc.subject.keywordsPAIRWISE CONSTRAINTS
dc.subject.keywordsGEOMETRICAL STRUCTURE
dc.subject.keywordsSIDE INFORMATION
dc.subject.keywordsALGORITHM
dc.subject.keywordsMODEL
dc.subject.keywordsIMAGE
dc.subject.keywordsFRAMEWORK
dc.subject.keywordsSIMILARITY
dc.title

Semi-supervised constrained clustering: an in-depth overview, ranked taxonomy and future research directions

dc.typeJournal article
dspace.entity.typePublication
Files

Original bundle

Name:
8769.pdf
Size:
14.63 MB
Format:
Adobe Portable Document Format
Description:
Publication available in collections: