Publication:

High Energy Density Solid-State Lithium-Sulfur Batteries: Challenges and Advances in Cathode Materials

Date

 
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department3e6bdb28-01ee-4d90-9f47-ee4353de3e26
cris.virtualsource.orcid3e6bdb28-01ee-4d90-9f47-ee4353de3e26
dc.contributor.authorLi, Yuanrui
dc.contributor.authorYan, Yingjing
dc.contributor.authorShen, Kaier
dc.contributor.authorHe, Mengxue
dc.contributor.authorLi, Yuantonghe
dc.contributor.authorSong, Huimin
dc.contributor.authorZheng, Chenxi
dc.contributor.authorShi, Weize
dc.contributor.authorYe, Fei
dc.contributor.authorOzoemena, Kenneth Ikechukwu
dc.contributor.authorSafari, Momo
dc.contributor.authorPang, Quanquan
dc.date.accessioned2026-01-27T08:51:45Z
dc.date.available2026-01-27T08:51:45Z
dc.date.createdwos2025-10-05
dc.date.issued2025
dc.description.abstractAll-solid-state lithium–sulfur batteries (ASSLSBs), as an energy storage system for achieving the high energy density target of 600 Wh kg–1, hold significant importance in driving in next-generation battery technologies. This review focuses on the key challenges of cathode materials for high energy density ASSLSBs and systematically summarizes the recent research progress. First, the interfacial reaction mechanisms among active materials, conductive agents, and solid electrolytes in sulfur cathodes are analyzed in depth, revealing the fundamental causes of interface failure. Second, the advancements in composite cathodes are summarized, including the influence of preparation processes, material design strategies, and the structure-performance regulation mechanisms of mixed conductors. Next, the role of interface engineering strategies in enhancing reaction kinetics is discussed in detail. Furthermore, recently developed solutions for critical technical bottlenecks, such as high sulfur loading and low-temperature adaptability, are reviewed. Finally, future research directions are envisioned from the dimensions of multiscale interface engineering, material systems, and characterization techniques. This review aims to move beyond conventional single-component optimization approaches, developing a multicomponent framework for cathode design. The review further provides references for developing high-energy-density, long-cycle-life ASSLSBs, offering a comprehensive reference for advancing the practical application of this energy storage technology.
dc.description.wosFundingTextThis work was supported by the National Key Research and Development Program of China (2021YFB2500200), the National Natural Science Foundation of China (92372115, 22075002, 52203347, 22409006), and the Beijing Natural Science Foundation (No. Z220020).
dc.identifier.doi10.1021/acsnano.5c10108
dc.identifier.issn1936-0851
dc.identifier.pmidMEDLINE:40999761
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/58749
dc.language.isoeng
dc.provenance.editstepusergreet.vanhoof@imec.be
dc.publisherAMER CHEMICAL SOC
dc.source.beginpage34469
dc.source.endpage34491
dc.source.issue39
dc.source.journalACS NANO
dc.source.numberofpages23
dc.source.volume19
dc.subject.keywordsELECTROCHEMICAL REDOX
dc.subject.keywordsPERFORMANCE
dc.subject.keywordsELECTROLYTES
dc.title

High Energy Density Solid-State Lithium-Sulfur Batteries: Challenges and Advances in Cathode Materials

dc.typeJournal article review
dspace.entity.typePublication
imec.identified.statusLibrary
imec.internal.crawledAt2025-10-22
imec.internal.sourcecrawler
Files
Publication available in collections: