Publication:

Microelectrode-array-based sensing of bacterial biofilm antibiotic susceptibility using impedance spectroscopy and convolutional neural networks

 
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid0000-0002-5752-3203
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department3909e2b5-54f0-4eae-8059-f300c7f1e9ad
cris.virtualsource.departmentd6c310cb-43a9-4392-bd55-a12746e42ff7
cris.virtualsource.orcid3909e2b5-54f0-4eae-8059-f300c7f1e9ad
cris.virtualsource.orcidd6c310cb-43a9-4392-bd55-a12746e42ff7
dc.contributor.authorVan Haeverbeke, Maxime
dc.contributor.authorCums, Charlotte
dc.contributor.authorVackier, Thijs
dc.contributor.authorBraeken, Dries
dc.contributor.authorStock, Michiel
dc.contributor.authorSteenackers, Hans
dc.contributor.authorDe Baets, Bernard
dc.date.accessioned2026-01-19T10:39:49Z
dc.date.available2026-01-19T10:39:49Z
dc.date.issued2024
dc.description.abstractIn light of the worldwide emergence of antibioticresistant bacteria, appropriate and targeted approaches to antibiotic treatments are crucial. Such targeted or precision medicine approaches rely on precisely and quickly determining antibiotic susceptibility. The current routinely applied antibiotic susceptibility testing assays operate within a timeline of one to two days, hindering timely treatment decisions. Furthermore, point-of-care testing would further improve the efficiency of the tests. Recent research demonstrates that electrochemical impedance spectroscopy and related techniques are promising solutions because they can be developed as miniaturised point-of-care devices and high-throughput installations in healthcare facilities. This paper proposes a label-free impedimetric sensing approach to antibiotic susceptibility testing. The proposed novel method uses unmodified microelectrode arrays and convolutional neural network models leveraging impedance spectroscopy measurements and their derived equivalent electrical circuit features to accurately determine bacterial biofilms’ antibiotic susceptibility.
dc.identifier10.1109/BioCAS61083.2024.10798403
dc.identifier.doi10.1109/BioCAS61083.2024.10798403
dc.identifier.eisbn979-8-3503-5495-9
dc.identifier.isbn979-8-3503-5496-6
dc.identifier.issn2766-4465
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/58660
dc.language.isoen
dc.provenance.editstepusergreet.vanhoof@imec.be
dc.publisherIEEE
dc.relation.ispartof2024 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE, BIOCAS 2024
dc.relation.ispartofseries2024 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE, BIOCAS 2024
dc.source.beginpageN/A
dc.source.conference2024 IEEE Biomedical Circuits and Systems Conference (BioCAS)
dc.source.conferencedate2024-10-24
dc.source.conferencelocationXi'an
dc.source.journalIEEE Biomedical Circuits and Systems Conference (BioCAS)
dc.subjectBacterial biofilm
dc.subjectantimicrobial susceptibility
dc.subjectelectrochemical impedance spectroscopy
dc.subjectequivalent electrical circuit
dc.subjectmachine learning
dc.subjectScience & Technology
dc.subjectTechnology
dc.title

Microelectrode-array-based sensing of bacterial biofilm antibiotic susceptibility using impedance spectroscopy and convolutional neural networks

dc.typeProceedings paper
dspace.entity.typePublication
oaire.citation.editionWOS.ISTP
person.identifier.orcid0000-0002-6536-5508
person.identifier.ridE-4947-2018
person.identifier.ridE-8877-2010
person.identifier.ridHKN-8400-2023
person.identifier.rid#PLACEHOLDER_PARENT_METADATA_VALUE#
Files
Publication available in collections: