Publication:

ChronosGuard: A Hierarchical Machine Learning Intrusion Detection System for Modern Clouds

 
dc.contributor.authorVerkerken, Miel
dc.contributor.authorPereira dos Santos, José Pedro
dc.contributor.authorD'hooge, Laurens
dc.contributor.authorWauters, Tim
dc.contributor.authorVolckaert, Bruno
dc.contributor.authorDe Turck, Filip
dc.contributor.imecauthorVerkerken, Miel
dc.contributor.imecauthorD'hooge, Laurens
dc.contributor.imecauthorWauters, Tim
dc.contributor.imecauthorVolckaert, Bruno
dc.contributor.imecauthorDe Turck, Filip
dc.contributor.imecauthorPereira dos Santos, José Pedro
dc.contributor.orcidimecVerkerken, Miel::0000-0002-1781-900X
dc.contributor.orcidimecD'hooge, Laurens::0000-0001-5086-6361
dc.contributor.orcidimecWauters, Tim::0000-0003-2618-3311
dc.contributor.orcidimecVolckaert, Bruno::0000-0003-0575-5894
dc.contributor.orcidimecDe Turck, Filip::0000-0003-4824-1199
dc.contributor.orcidimecPereira dos Santos, José Pedro::0000-0002-6276-2057
dc.date.accessioned2025-08-07T11:52:10Z
dc.date.available2025-03-04T19:59:25Z
dc.date.available2025-03-06T09:08:52Z
dc.date.available2025-08-07T11:52:10Z
dc.date.embargo2024-12-31
dc.date.issued2024
dc.description.wosFundingTextJose Santos is funded by the Research Foundation Flanders (FWO), grant number 1299323N. This work is supported by the Belgian Chancellery of the Prime Minister (Grant: AIDE-BOSA).
dc.identifier.doi10.23919/CNSM62983.2024.10814370
dc.identifier.eisbn978-3-903176-66-9
dc.identifier.isbn979-8-3315-0515-8
dc.identifier.issn2165-9605
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/45283
dc.publisherIEEE
dc.source.conference20th International Conference on Network and Service Management
dc.source.conferencedateOCT 28-31, 2024
dc.source.conferencelocationPrague, Czech Republic
dc.source.journalN/A
dc.source.numberofpages9
dc.title

ChronosGuard: A Hierarchical Machine Learning Intrusion Detection System for Modern Clouds

dc.typeProceedings paper
dspace.entity.typePublication
Files

Original bundle

Name:
8690.pdf
Size:
776.98 KB
Format:
Unknown data format
Description:
Published version
Name:
8690_acc.pdf
Size:
858.37 KB
Format:
Unknown data format
Description:
Accepted version
Publication available in collections: