Publication:

Dose-volume-based evaluation of convolutional neural network-based auto-segmentation of thoracic organs at risk

 
dc.contributor.authorJohnston, Noemie
dc.contributor.authorDe Rycke, Jeffrey
dc.contributor.authorLievens, Yolande
dc.contributor.authorvan Eijkeren, Marc
dc.contributor.authorAelterman, Jan
dc.contributor.authorVandersmissen, Eva
dc.contributor.authorPonte, Stephan
dc.contributor.authorVanderstraeten, Barbara
dc.contributor.imecauthorAelterman, Jan
dc.contributor.orcidimecAelterman, Jan::0000-0002-5543-2631
dc.date.accessioned2023-02-20T10:21:00Z
dc.date.available2022-09-09T02:42:15Z
dc.date.available2023-02-20T10:21:00Z
dc.date.embargo2022-08-01
dc.date.issued2022
dc.identifier.doi10.1016/j.phro.2022.07.004
dc.identifier.issn2405-6316
dc.identifier.pmidMEDLINE:35936797
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/40413
dc.publisherELSEVIER
dc.source.beginpage109
dc.source.endpage117
dc.source.issuena
dc.source.journalPHYSICS & IMAGING IN RADIATION ONCOLOGY
dc.source.numberofpages9
dc.source.volume23
dc.subject.keywordsLUNG-CANCER
dc.subject.keywordsRADIOTHERAPY
dc.subject.keywordsDELINEATION
dc.subject.keywordsATLAS
dc.subject.keywordsVALIDATION
dc.subject.keywordsIMPACT
dc.title

Dose-volume-based evaluation of convolutional neural network-based auto-segmentation of thoracic organs at risk

dc.typeJournal article
dspace.entity.typePublication
Files

Original bundle

Name:
1-s2.0-S2405631622000677-main.pdf
Size:
3.11 MB
Format:
Adobe Portable Document Format
Description:
Published version
Publication available in collections: