Publication:

Towards automated hesitation detection during support-system enhanced industrial assembly

 
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid0000-0003-3478-4969
cris.virtual.orcid0000-0003-2557-3764
cris.virtual.orcid0000-0002-3437-1972
cris.virtual.orcid0000-0002-6077-6084
cris.virtual.orcid0000-0001-8045-8801
cris.virtual.orcid0000-0003-2056-1246
cris.virtualsource.departmentad5451d6-85aa-42e5-b050-3560e688fd36
cris.virtualsource.departmentf8b1712d-8920-49aa-9768-f761c34e4483
cris.virtualsource.department2c3cf5d0-e4a5-427a-bdc8-829464d180a8
cris.virtualsource.department1fa60d26-7c18-408a-a326-082a79287417
cris.virtualsource.department0e2c74b5-69be-493d-9e93-6da933cee96a
cris.virtualsource.departmentcdac3f50-44be-4aaf-94f2-3bb46d68d069
cris.virtualsource.orcidad5451d6-85aa-42e5-b050-3560e688fd36
cris.virtualsource.orcidf8b1712d-8920-49aa-9768-f761c34e4483
cris.virtualsource.orcid2c3cf5d0-e4a5-427a-bdc8-829464d180a8
cris.virtualsource.orcid1fa60d26-7c18-408a-a326-082a79287417
cris.virtualsource.orcid0e2c74b5-69be-493d-9e93-6da933cee96a
cris.virtualsource.orcidcdac3f50-44be-4aaf-94f2-3bb46d68d069
dc.contributor.authorJoundi, Jamil
dc.contributor.authorDe Bruyne Jonas
dc.contributor.authorZheleva, Aleksandra
dc.contributor.authorDurnez, Wouter
dc.contributor.authorSaldien, Jelle
dc.contributor.authorBombeke, Klaas
dc.date.accessioned2025-12-11T10:58:27Z
dc.date.available2025-12-11T10:58:27Z
dc.date.issued2024
dc.description.abstractModern factories have to accommodate high flexibility, extreme customization and short product life cycles in a cost-effective way. This requires that the operators are provided with sufficient system support to aid their decision-making and hesitation. To investigate how the level of support can affect the operators’ behavior, the current study immersed 27 participants in a virtual reality factory where they were asked to complete three different assemblies with varying levels of system support (low, medium, or high). The support was provided by a collaborative robot (cobot). The participants’ experience was measured via a subjective marker of difficulty and an objective eye-tracking feature (gaze switches). The results showed that when the level of cobot support was low, participants found the assembly step more difficult and were gazing at the instruction screen more often compared to the medium and high support conditions. This suggests that the number of times operators look back at the instruction screen during a step could be a promising marker to automatically detect hesitation behavior in instruction-based assemblies. This study, therefore, presents the initial effort toward validating a behavioral marker of hesitation within this context.
dc.identifier.doi10.1109/icvr62393.2024.10868463
dc.identifier.isbn9798350364231
dc.identifier.issnN/A
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/58548
dc.provenance.editstepusergreet.vanhoof@imec.be
dc.publisherIEEE
dc.source.beginpage53
dc.source.conference2024 10th International Conference on Virtual Reality (ICVR)
dc.source.conferencedate2024-07-24
dc.source.conferencelocationBournemouth, UK
dc.source.endpage57
dc.source.journal2024 10th International Conference on Virtual Reality (ICVR)
dc.title

Towards automated hesitation detection during support-system enhanced industrial assembly

dc.typeProceedings paper
dspace.entity.typePublication
Files

Original bundle

Name:
01JKQSENVH3YTABETJBH6FM4Y2.pdf
Size:
295.11 KB
Format:
Adobe Portable Document Format
Description:
Accepted
Publication available in collections: