Publication:

Near unity narrowband infrared thermal emitters on silicon with silicon carbide-germanium metasurfaces

Date

 
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department157387e8-9779-46ad-8c69-d039e22250c5
cris.virtualsource.orcid157387e8-9779-46ad-8c69-d039e22250c5
dc.contributor.authorRufangura, Patrick
dc.contributor.authorCui, Yiyang
dc.contributor.authorLiu, Huan
dc.contributor.authorCarlstrom, Johan D.
dc.contributor.authorCrozier, Kenneth
dc.contributor.authorBrongersma, Mark L.
dc.contributor.authorYang, Yang
dc.contributor.authorIacopi, Francesca
dc.date.accessioned2026-02-02T15:15:53Z
dc.date.available2026-02-02T15:15:53Z
dc.date.createdwos2025-09-11
dc.date.issued2025
dc.description.abstractTraditional thermal emitters are characterized by an incoherent broadband emission spectrum. However, narrowband coherent thermal emission with a high-quality factor in thermally stable materials is highly desirable for applications such as sensing, thermal energy management, thermophotovoltaic systems, and other infrared technologies. Recent advances in engineered nanostructured polaritonic materials, particularly polar dielectric materials in the mid-infrared (MIR) regime, have enabled new approaches to tailoring narrowband coherent thermal emission. The use of low-loss phonon polaritons in thermally stable silicon carbide provides a promising route to MIR thermal emission. In this work, we demonstrate narrowband, near-unity MIR thermal emission by coupling coherent surface phonon polaritons in a SiC layer with a subwavelength germanium grating on a silicon substrate. The demonstrated polarization-dependent thermal emitter, compatible with silicon fabrication technologies for seamless on-chip photonic integration, exhibits narrowband high emissivity (>90%) at a wavelength of ∼11 μm. Furthermore, we show that these emitters achieve experimental quality factors well above 100 while maintaining significant emission across a wide range of incident angles for MIR radiation.
dc.description.wosFundingTextFabrication at the cleanroom of the Research Prototype Foundry (RPF) of the University of Sydney was supported through the Australian National Fabrication Facility (ANFF) network. This work was also supported by the Australian Research Council through the Center of Excellence for Transformative Meta-Optical Systems (No. CE200100010).
dc.identifier.doi10.1063/5.0271574
dc.identifier.issn2378-0967
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/58774
dc.language.isoeng
dc.provenance.editstepusergreet.vanhoof@imec.be
dc.publisherAIP Publishing
dc.source.beginpage080802
dc.source.issue8
dc.source.journalAPL PHOTONICS
dc.source.numberofpages10
dc.source.volume10
dc.subject.keywordsRADIATION
dc.title

Near unity narrowband infrared thermal emitters on silicon with silicon carbide-germanium metasurfaces

dc.typeJournal article
dspace.entity.typePublication
imec.internal.crawledAt2025-10-22
imec.internal.sourcecrawler
Files

Original bundle

Name:
080802_1_5.0271574.pdf
Size:
8.56 MB
Format:
Adobe Portable Document Format
Description:
Published
Publication available in collections: