Publication:

Investigating a novel 3D-printed electrical impedance tomography sensor for monitoring the interaction pressure on a customized physical interface in wearable robots

 
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid0000-0002-7991-0976
cris.virtual.orcid0000-0003-4881-9341
cris.virtual.orcid0000-0001-8936-254X
cris.virtual.orcid0009-0001-9522-5987
cris.virtualsource.department4baa1719-20bb-4a54-8a08-c9ce408ce83d
cris.virtualsource.department47530ccc-659e-457a-9b3b-557ce3dd23e7
cris.virtualsource.department36df9ba7-59b3-496a-9f09-dfcb192bb6d3
cris.virtualsource.departmentec0177ea-85ec-4072-a80b-c172114df1f0
cris.virtualsource.orcid4baa1719-20bb-4a54-8a08-c9ce408ce83d
cris.virtualsource.orcid47530ccc-659e-457a-9b3b-557ce3dd23e7
cris.virtualsource.orcid36df9ba7-59b3-496a-9f09-dfcb192bb6d3
cris.virtualsource.orcidec0177ea-85ec-4072-a80b-c172114df1f0
dc.contributor.authorChen, Huaijin
dc.contributor.authorWang, Zhanwei
dc.contributor.authorLanglois, Kevin
dc.contributor.authorHaji Ali Mohamadi, Parham
dc.contributor.authorTian, Haibing
dc.contributor.authorVerstraten, Tom
dc.contributor.authorVanderborght, Bram
dc.date.accessioned2026-01-26T10:53:21Z
dc.date.available2026-01-26T10:53:21Z
dc.date.createdwos2025-10-10
dc.date.issued2026
dc.description.abstractMonitoring pressure distribution on the physical interface of wearable robots (including the cuff of the exoskeleton, rehabilitation robot, and the socket of the prosthesis) is crucial for ensuring safe and comfortable human-robot interactions. However, the complex contour of customized physical interfaces brings challenges in integrating sensors. To address this issue, we propose a novel method for sensorizing the interfaces based on a 3D-printed Electrical Impedance Tomography (EIT) pressure sensor, which is easy to customize, regardless of the complexity of the spatial working surfaces of the interface. Considering the anisotropic conductivity of 3D-printed parts, we first investigated its properties and examined its impact on EIT imaging using simple shape 2D planar sensors. Then, an adjusted Jacobian matrix was employed in imaging to reduce the impact of anisotropic conductivity on imaging. Finally, an EIT pressure sensor embedded physical interface was customized for the forearm using 3D printing and tested on a rehabilitation cobot. The online experimental results validated that it can effectively monitor the distribution and variation of pressure between the human body and the interface.
dc.description.wosFundingTextHuaijin Chen is supported by China Scholarship Council (CSC) under NO. 202106830032.Kevin Langlois is supported by a personal grant from the Fonds Wetenschappelijk Onderzoek (FWO) under grant 1258523N.FWO Strategisch Basis Onderzoek (SBO) Sublime and the Flemish Government under the program Onderzoeksprogramma Artificiele Intelligentie (AI) Vlaanderen.
dc.identifier.doi10.1016/j.measurement.2025.118714
dc.identifier.issn0263-2241
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/58719
dc.language.isoeng
dc.provenance.editstepusergreet.vanhoof@imec.be
dc.publisherELSEVIER SCI LTD
dc.source.beginpage118714
dc.source.issuePt. B, 15 January
dc.source.journalMEASUREMENT
dc.source.numberofpages11
dc.source.volume257
dc.subject.keywordsRECONSTRUCTION
dc.title

Investigating a novel 3D-printed electrical impedance tomography sensor for monitoring the interaction pressure on a customized physical interface in wearable robots

dc.typeJournal article
dspace.entity.typePublication
imec.internal.crawledAt2025-10-22
imec.internal.sourcecrawler
Files
Publication available in collections: