Publication:

Unit-Cell-Based Approach for Electromigration Compliance Checks in VLSI Power Delivery Networks

 
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid0000-0003-1374-4116
cris.virtual.orcid0000-0001-8706-4311
cris.virtual.orcid0000-0002-3955-0638
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid0000-0002-0290-691X
cris.virtual.orcid0009-0004-4809-7806
cris.virtualsource.department0ba53db7-edf6-4003-a968-0dbe400bd32a
cris.virtualsource.department44e990b7-69bb-4030-9cfb-7c520e920b5d
cris.virtualsource.departmente5db7419-6810-435c-9c41-67ff0eeb4bc3
cris.virtualsource.departmentbf2a3988-e68e-4423-89d2-6fafcd9e6c84
cris.virtualsource.department60497238-bd25-43d2-a0aa-de0269427c92
cris.virtualsource.department0eb429ca-bc20-4ebe-9558-f7af07f13b56
cris.virtualsource.orcid0ba53db7-edf6-4003-a968-0dbe400bd32a
cris.virtualsource.orcid44e990b7-69bb-4030-9cfb-7c520e920b5d
cris.virtualsource.orcide5db7419-6810-435c-9c41-67ff0eeb4bc3
cris.virtualsource.orcidbf2a3988-e68e-4423-89d2-6fafcd9e6c84
cris.virtualsource.orcid60497238-bd25-43d2-a0aa-de0269427c92
cris.virtualsource.orcid0eb429ca-bc20-4ebe-9558-f7af07f13b56
dc.contributor.authorEsposto, Simone
dc.contributor.authorCiofi, Ivan
dc.contributor.authorSisto, Giuliano
dc.contributor.authorCroes, Kristof
dc.contributor.authorMilojevic, Dragomir
dc.contributor.authorZahedmanesh, Houman
dc.contributor.imecauthorEsposto, Simone
dc.contributor.imecauthorCiofi, Ivan
dc.contributor.imecauthorSisto, Giuliano
dc.contributor.imecauthorCroes, Kristof
dc.contributor.imecauthorMilojevic, Dragomir
dc.contributor.imecauthorZahedmanesh, Houman
dc.contributor.orcidimecEsposto, Simone::0009-0004-4809-7806
dc.contributor.orcidimecCiofi, Ivan::0000-0003-1374-4116
dc.contributor.orcidimecSisto, Giuliano::0000-0001-8706-4311
dc.contributor.orcidimecCroes, Kristof::0000-0002-3955-0638
dc.contributor.orcidimecZahedmanesh, Houman::0000-0002-0290-691X
dc.date.accessioned2025-06-19T03:57:58Z
dc.date.available2025-06-19T03:57:58Z
dc.date.issued2025
dc.description.abstractAs the electromigration (EM) reliability margin reduces rapidly with scaling, novel approaches for EM-compliance checks are being intensively sought to enable more accurate and less conservative analyses. Currently, chip-level EM reliability is assessed based on the failure probability of individual lines and vias in the BEOL stack, overlooking potential redundant connections that could still ensure circuit operation despite isolated failures. This is particularly relevant for the power delivery network (PDN), which is redundant by definition due to its regular mesh structure. In this work, we leverage a new approach to perform EM-compliance checks that relies on considering the PDN as a matrix of identical network units-cells, henceforth referred to as tiles, and using them to compute the overall failure risk. As opposed to conventional methods, our approach captures the impact of redundancy within each individual PDN tile, thereby providing less conservative reliability estimations. After reviewing standard methods for EM-compliance checks, namely limit-based and statistical EM budgeting (SEB), we quantify the additional reliability margin provided by our PDN-tile approach. For our analysis, we considered a PDN featuring three different metallization schemes for Dual Damascene (DD) Cu/Low-k interconnects utilizing SiCN capping, Cobalt (Co) capping with and without Ruthenium (Ru) via prefill. Using the standard SEB method indicated that Co capping and Co capping + Ru Via Prefill lead to reductions in EM failure risk by 5 and 7 orders of magnitude, respectively, compared to SiCN capping. The new approach was implemented for the first metallization with SiCN capping. At 10 years lifetime, our PDN-tile approach foresees a failure probability which is 3 orders of magnitude smaller than the SEB approach. At an equivalent failure probability of 100ppm and the same target lifetime of 10 years, the current of standard cells can be increased by 2.8-fold, giving designers more margin to improve chip performances.
dc.identifier.doi10.1109/TDMR.2025.3566054
dc.identifier.issn1530-4388
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/45815
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
dc.source.beginpage232
dc.source.endpage239
dc.source.issue2
dc.source.journalIEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY
dc.source.numberofpages8
dc.source.volume25
dc.subject.keywordsINTERCONNECTS
dc.subject.keywordsDELAY
dc.title

Unit-Cell-Based Approach for Electromigration Compliance Checks in VLSI Power Delivery Networks

dc.typeJournal article
dspace.entity.typePublication
Files
Publication available in collections: