Publication:

Multi-branch Neural Networks for Video Anomaly Detection in Adverse Lighting and Weather Conditions

 
dc.contributor.authorLeroux, Sam
dc.contributor.authorLi, Bo
dc.contributor.authorSimoens, Pieter
dc.contributor.imecauthorLeroux, Sam
dc.contributor.imecauthorLi, Bo
dc.contributor.imecauthorSimoens, Pieter
dc.contributor.orcidimecLeroux, Sam::0000-0003-3792-5026
dc.contributor.orcidimecSimoens, Pieter::0000-0002-9569-9373
dc.date.accessioned2022-11-28T11:13:11Z
dc.date.available2022-07-07T02:27:26Z
dc.date.available2022-07-07T06:12:21Z
dc.date.available2022-11-28T11:13:11Z
dc.date.issued2022
dc.description.wosFundingTextThis research received funding from the Flemish Government under the "Onderzoeksprogramma Artificiele Intelligentie (AI) Vlaanderen" programme, and from imec under the CityFlows AAA programme.
dc.identifier.doi10.1109/WACV51458.2022.00308
dc.identifier.eisbn978-1-6654-0915-5
dc.identifier.issn2472-6737
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/40069
dc.publisherIEEE COMPUTER SOC
dc.source.beginpage3027
dc.source.conference22nd IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)
dc.source.conferencedateJAN 04-08, 2022
dc.source.conferencelocationWaikoloa
dc.source.endpage3035
dc.source.journal/
dc.source.numberofpages9
dc.title

Multi-branch Neural Networks for Video Anomaly Detection in Adverse Lighting and Weather Conditions

dc.typeProceedings paper
dspace.entity.typePublication
Files

Original bundle

Name:
8046.pdf
Size:
4.46 MB
Format:
Unknown data format
Description:
Publication available in collections: