Publication:

Clinical Validation of Deep Learning for Real-Time Tissue Oxygenation Estimation Using Spectral Imaging

 
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid0000-0002-8539-826X
cris.virtual.orcid0000-0002-6246-5538
cris.virtual.orcid0000-0002-2881-6760
cris.virtual.orcid0000-0002-4269-1976
cris.virtualsource.departmentb58296e9-e26b-4d30-a4f2-9265a77b3971
cris.virtualsource.department8401b4d6-933a-4e5b-ac6e-8e5cca2806bf
cris.virtualsource.departmentd329dc30-c654-4130-b349-b4a21a721faa
cris.virtualsource.department2a23a721-658e-4393-861f-c17e5a324546
cris.virtualsource.orcidb58296e9-e26b-4d30-a4f2-9265a77b3971
cris.virtualsource.orcid8401b4d6-933a-4e5b-ac6e-8e5cca2806bf
cris.virtualsource.orcidd329dc30-c654-4130-b349-b4a21a721faa
cris.virtualsource.orcid2a23a721-658e-4393-861f-c17e5a324546
dc.contributor.authorDe Winner, Jens
dc.contributor.authorWillems, Siri
dc.contributor.authorLuthman, Siri
dc.contributor.authorBabin, Danilo
dc.contributor.authorLuong, Hiep
dc.contributor.authorCeelen, Wim
dc.date.accessioned2026-01-08T11:23:13Z
dc.date.available2026-01-08T11:23:13Z
dc.date.issued2025
dc.description.abstractAccurate, real-time monitoring of tissue ischemia is crucial to understand tissue health and guide surgery. Spectral imaging shows great potential for contactless and intraoperative monitoring of tissue oxygenation. Due to the difficulty of obtaining direct reference oxygenation values, conventional methods are based on linear unmixing techniques. These are prone to assumptions and these linear relations may not always hold in practice. In this work, we present deep learning approaches for real-time tissue oxygenation estimation using Monte-Carlo simulated spectra. We train a fully connected neural network (FCN) and a convolutional neural network (CNN) for this task and propose a domainadversarial training approach to bridge the gap between simulated and real clinical spectral data. Results demonstrate that these deep learning models achieve a higher correlation with capillary lactate measurements, a well-known marker of hypoxia, obtained during spectral imaging in surgery, compared to traditional linear unmixing. Notably, domainadversarial training effectively reduces the domain gap, optimizing performance in real clinical settings.
dc.identifier10.1007/978-3-032-05127-1_12
dc.identifier.doihttps://doi.org/10.1007/978-3-032-05127-1_12
dc.identifier.eisbn978-3-032-05127-1
dc.identifier.isbn978-3-032-05126-4
dc.identifier.issnN/A
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/58623
dc.identifier.urlhttps://link.springer.com/chapter/10.1007/978-3-032-05127-1_12#citeas
dc.language.iso1
dc.provenance.editstepusergreet.vanhoof@imec.be
dc.publisherSpringer, Cham
dc.relation.ispartofMEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2025, PT X
dc.relation.ispartofseriesMEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2025, PT X
dc.rights.oaversionhttps://arxiv.org/abs/2505.18010
dc.source.beginpage1
dc.source.conferenceMedical Image Computing and Computer Assisted Intervention – MICCAI 2025
dc.source.conferencedate2025-09-23
dc.source.conferencelocationDaejeon
dc.source.journalLecture Notes in Computer Science, vol 15969
dc.subjectmultispectral imaging
dc.subjecttissue oxygenation
dc.subjectdomain adaptation
dc.subjectdeep learning
dc.subjectsimulations
dc.subjectreal-time imaging
dc.subjectScience & Technology
dc.subjectTechnology
dc.subjectLife Sciences & Biomedicine
dc.title

Clinical Validation of Deep Learning for Real-Time Tissue Oxygenation Estimation Using Spectral Imaging

dc.typeProceedings paper
dspace.entity.typePublication
oaire.citation.editionWOS.ISTP
oaire.citation.endPage126
oaire.citation.startPage119
oaire.citation.volume15969
person.identifier.orcid0000-0002-2881-6760
person.identifier.ridAAA-7371-2020
person.identifier.ridABC-2985-2020
Files
Publication available in collections: