Publication:

Explaining and interpreting hyperdimensional computing classifiers on tabular data

 
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid0000-0002-2956-2889
cris.virtual.orcid0000-0003-0351-1714
cris.virtual.orcid0000-0002-5353-9953
cris.virtual.orcid0000-0002-8607-5067
cris.virtualsource.department0f50bf4d-32bf-4aca-9b48-d78c18163e4e
cris.virtualsource.department0e177830-d028-449f-9e57-ea9fa8c7b866
cris.virtualsource.departmente3748604-d374-4de5-94cb-381cf3007bbf
cris.virtualsource.departmentb4e95a64-316d-496a-94fb-177f312882b8
cris.virtualsource.orcid0f50bf4d-32bf-4aca-9b48-d78c18163e4e
cris.virtualsource.orcid0e177830-d028-449f-9e57-ea9fa8c7b866
cris.virtualsource.orcide3748604-d374-4de5-94cb-381cf3007bbf
cris.virtualsource.orcidb4e95a64-316d-496a-94fb-177f312882b8
dc.contributor.authorSmets, Laura
dc.contributor.authorVan Leekwijck, Werner
dc.contributor.authorLatre, Steven
dc.contributor.authorOramas, Jose
dc.date.accessioned2026-01-08T12:28:46Z
dc.date.available2026-01-08T12:28:46Z
dc.date.issued2025-12
dc.description.abstractGiven the rise in the usage of artificial intelligence models and machine learning approaches in our day-to-day lives, it has become increasingly important to explain these models to increase user trust. Hyperdimensional Computing (HDC) has been introduced as a powerful, energy-efficient algorithmic framework that is intrinsically less opaque than (deep) neural networks. Nevertheless, the possibility of explaining and interpreting the HDCbased classification model has not yet been explored explicitly. Therefore, this work proposes an explanation method and an interpretation method for the HDC-based classification model working with tabular data. The proposed methods have been successfully evaluated on three tabular data sets with a diverse number of samples, features, and classes. Their faithfulness is validated with coherence checks, the deletion and insertion metrics, and a feature ablation study. The results of the proposed explanation method align well with the well-studied LIME explanations.
dc.identifier10.1016/j.neucom.2025.131643
dc.identifier.doihttps://doi.org/10.1016/j.neucom.2025.131643
dc.identifier.issn0925-2312
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/58625
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S092523122502315X#s0185
dc.language.iso1
dc.provenance.editstepusergreet.vanhoof@imec.be
dc.publisherElsevier
dc.relation.ispartofNEUROCOMPUTING
dc.relation.ispartofseriesNEUROCOMPUTING
dc.rights.oaversionhttps://www.sciencedirect.com/science/article/pii/S092523122502315X#s0185
dc.source.beginpage131643
dc.source.journalNeurocomputing
dc.source.volume657
dc.subjectCLASSIFICATION
dc.subjectNETWORK
dc.subjectHyperdimensional computing
dc.subjectVector symbolic architectures
dc.subjectModel explanation
dc.subjectModel interpretation
dc.subjectClassification
dc.subjectTabular data
dc.subjectScience & Technology
dc.subjectTechnology
dc.title

Explaining and interpreting hyperdimensional computing classifiers on tabular data

dc.typeJournal article
dspace.entity.typePublication
oaire.citation.editionWOS.SCI
oaire.citation.volume657
person.identifier.orcid0000-0002-8607-5067
person.identifier.ridN-8689-2016
person.identifier.ridJHU-4796-2023
Files

Original bundle

Name:
1-s2.0-S092523122502315X-main.pdf
Size:
4.31 MB
Format:
Adobe Portable Document Format
Description:
Published
Publication available in collections: