Publication:

Meta-learning families of plasticity rules in recurrent spiking networks using simulation-based inference

Date

 
dc.contributor.authorConfavreux, Basile
dc.contributor.authorRamesh, Poornima
dc.contributor.authorGoncalves, Pedro
dc.contributor.authorMacke, Jakob H.
dc.contributor.authorVogels, Tim P.
dc.contributor.imecauthorGoncalves, Pedro
dc.date.accessioned2024-09-02T12:15:52Z
dc.date.available2024-08-15T18:46:43Z
dc.date.available2024-09-02T12:15:52Z
dc.date.issued2023
dc.description.wosFundingTextWe thank Chaitanya Chintaluri, Everton Agnes, Nicoleta Condruz, Douglas Feitosa Tome, Michael Deistler and Jan Boelts for helpful discussions and feedback on the manuscript. This work was funded by the European Research Council (ERC consolidator grant SYNAPSEEK), the German Research Foundation (DFG; Germany's Excellence Strategy MLCoE -EXC number 2064/1 PN 390727645), the German Federal Ministry of Education and Research (BMBF; Tubingen AI Center, FKZ: 01IS18039A), the Human Frontier in Science Program (RGY0076/2018) and the FENS-Kavli Network of Excellence scientific exchange program. This research was supported by the Scientific Service Units (SSU) of IST Austria through resources provided by Scientific Computing (SciComp).
dc.identifier.issn1049-5258
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/44304
dc.publisherNEURAL INFORMATION PROCESSING SYSTEMS (NIPS)
dc.source.conference37th Conference on Neural Information Processing Systems (NeurIPS)
dc.source.conferencedateDEC 10-16, 2023
dc.source.conferencelocationNew Orleans
dc.source.journalN/A
dc.source.numberofpages14
dc.subject.keywordsSYNAPTIC PLASTICITY
dc.subject.keywordsCONNECTIVITY
dc.subject.keywordsINHIBITION
dc.subject.keywordsEXCITATION
dc.subject.keywordsMODEL
dc.title

Meta-learning families of plasticity rules in recurrent spiking networks using simulation-based inference

dc.typeProceedings paper
dspace.entity.typePublication
Files
Publication available in collections: