Publication:
A comprehensive review of datasets and deep learning techniques for vision in unmanned surface vehicles
| dc.contributor.author | Trinh, Linh | |
| dc.contributor.author | Mercelis, Siegfried | |
| dc.contributor.author | Anwar, Ali | |
| dc.date.accessioned | 2025-06-06T04:50:10Z | |
| dc.date.available | 2025-06-06T04:50:10Z | |
| dc.date.issued | 2025-AUG 1 | |
| dc.description.wosFundingText | The work was carried out in the framework of project INNO2MARE-Strengthening the Capacity for Excellence of Slovenian and Croatian Innovation Ecosystems to Support the Digital and Green Transitions of Maritime Regions (Funded by the European Union under the Horizon Europe Grant 101087348) . | |
| dc.identifier.doi | 10.1016/j.oceaneng.2025.121501 | |
| dc.identifier.issn | 0029-8018 | |
| dc.identifier.uri | https://imec-publications.be/handle/20.500.12860/45762 | |
| dc.publisher | PERGAMON-ELSEVIER SCIENCE LTD | |
| dc.source.journal | OCEAN ENGINEERING | |
| dc.source.numberofpages | 29 | |
| dc.source.volume | 334 | |
| dc.subject.keywords | OBJECT DETECTION | |
| dc.subject.keywords | SEMANTIC SEGMENTATION | |
| dc.subject.keywords | OBSTACLE DETECTION | |
| dc.subject.keywords | SHIP DETECTION | |
| dc.subject.keywords | NETWORK | |
| dc.subject.keywords | CAMERA | |
| dc.subject.keywords | RADAR | |
| dc.subject.keywords | ENVIRONMENT | |
| dc.subject.keywords | TRACKING | |
| dc.title | A comprehensive review of datasets and deep learning techniques for vision in unmanned surface vehicles | |
| dc.type | Journal article | |
| dspace.entity.type | Publication | |
| Files | ||
| Publication available in collections: |