The emergence of plasmonic nanoparticles in organic and perovskite optoelectronics has evolved beyond its role as a mere light emission and absorption enhancer, by delving into the exotic properties of semiconductor thin films. These properties include stimulated emission (lasing), coherent emission (superradiance), reversible spontaneous emission, and spontaneous synchronization leading to coherent emission. Despite the wealth of available fundamental knowledge, the commercialization of plasmonic nanoparticles in organic and perovskite optoelectronics such as light emitting diodes, photovoltaics and photodetectors, has yet to reach fruition. This paper reviews the technical challenges acting as barriers to commercialization and highlights how their solutions are influenced by economic, sustainability, and regulatory hurdles. A focused examination of technological challenges, including deposition, material compatibility, scalability, and reproducibility of the device performance, is presented. This perspective article concludes by proposing potential solutions and offering a future outlook for the field, emphasizing sustainability, the circular economy, and responsible electronics, alongside the continued advancement of fundamental knowledge.