Publication:

Effective Machine Learning-based Access Control Administration through Unlearning

 
dc.contributor.authorLlamas, Javier Martinez
dc.contributor.authorPreuveneers, Davy
dc.contributor.authorJoosen, Wouter
dc.contributor.imecauthorJoosen, Wouter
dc.date.accessioned2024-04-10T08:30:34Z
dc.date.available2023-09-07T17:31:10Z
dc.date.available2024-04-10T08:30:34Z
dc.date.issued2023
dc.description.wosFundingTextThis research is partially funded by the Research Fund KU Leuven, and by the Flemish Research Programme Cybersecurity. This paper was also partially supported by the AIDE project funded by the Belgian SPF BOSA under the programme "Financing of projects for the development of artificial intelligence in Belgium" with reference number 06.40.32.33.00.10.
dc.identifier.doi10.1109/EuroSPW59978.2023.00011
dc.identifier.eisbn979-8-3503-2720-5
dc.identifier.issn2768-0649
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/42479
dc.publisherIEEE COMPUTER SOC
dc.source.beginpage50
dc.source.conference8th IEEE European Symposium on Security and Privacy (EuroS and P)
dc.source.conferencedateJUL 03-07, 2023
dc.source.conferencelocationDelft
dc.source.endpage57
dc.source.journalN/A
dc.source.numberofpages8
dc.subject.keywordsVERIFICATION
dc.title

Effective Machine Learning-based Access Control Administration through Unlearning

dc.typeProceedings paper
dspace.entity.typePublication
Files
Publication available in collections: