Publication:

Machine learning based recursive partitioning for simplifying OPC model building complexity

Date

 
dc.contributor.authorOak, Apoorva
dc.contributor.authorHwang, Soobin
dc.contributor.authorChen, Ruoxia
dc.contributor.authorKang, Shinill
dc.contributor.authorKim, Ryan Ryoung han
dc.contributor.imecauthorOak, Apoorva
dc.contributor.imecauthorKim, Ryan Ryoung han
dc.contributor.orcidimecOak, Apoorva::0000-0002-0926-848X
dc.date.accessioned2022-06-16T09:46:28Z
dc.date.available2021-11-02T15:59:40Z
dc.date.available2022-06-16T09:46:28Z
dc.date.issued2021
dc.identifier.doi10.1117/12.2584704
dc.identifier.eisbn978-1-5106-4062-7
dc.identifier.issn0277-786X
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/37770
dc.publisherSPIE-INT SOC OPTICAL ENGINEERING
dc.source.beginpage116140O
dc.source.conferenceConference on Design-Process-Technology Co-optimization XV
dc.source.conferencedateFEB 22-26, 2021
dc.source.conferencelocationVirtual
dc.source.journalProceedings of SPIE
dc.source.numberofpages8
dc.source.volume11614
dc.title

Machine learning based recursive partitioning for simplifying OPC model building complexity

dc.typeProceedings paper
dspace.entity.typePublication
Files
Publication available in collections: