Publication:

Unsupervised Machine Learning Techniques for Network Intrusion Detection on Modern Data

Date

 
dc.contributor.authorVerkerken, Miel
dc.contributor.authorD'hooge, Laurens
dc.contributor.authorWauters, Tim
dc.contributor.authorVolckaert, Bruno
dc.contributor.authorDe Turck, Filip
dc.contributor.imecauthorVerkerken, Miel
dc.contributor.imecauthorD'hooge, Laurens
dc.contributor.imecauthorWauters, Tim
dc.contributor.imecauthorVolckaert, Bruno
dc.contributor.imecauthorDe Turck, Filip
dc.contributor.orcidimecDe Turck, Filip::0000-0003-4824-1199
dc.contributor.orcidimecWauters, Tim::0000-0003-2618-3311
dc.contributor.orcidimecVolckaert, Bruno::0000-0003-0575-5894
dc.contributor.orcidimecD'hooge, Laurens::0000-0001-5086-6361
dc.date.accessioned2022-01-27T16:21:59Z
dc.date.available2021-11-02T16:01:59Z
dc.date.available2022-01-27T16:21:59Z
dc.date.issued2020
dc.identifier.eisbn978-0-7381-4292-0
dc.identifier.issnna
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/37953
dc.publisherIEEE
dc.source.conference4th Cyber Security in Networking Conference (CSNet)
dc.source.conferencedateOCT 21-23, 2020
dc.source.conferencelocationLausanne
dc.source.journalna
dc.source.numberofpages8
dc.subject.keywordsANOMALY DETECTION
dc.title

Unsupervised Machine Learning Techniques for Network Intrusion Detection on Modern Data

dc.typeProceedings paper
dspace.entity.typePublication
Files
Publication available in collections: