Publication:

Feature dimensionality in CNN acceleration for high-throughput network intrusion detection

 
dc.contributor.authorLe Jeune, Laurens
dc.contributor.authorGoedeme, Toon
dc.contributor.authorMentens, Nele
dc.contributor.imecauthorLe Jeune, Laurens
dc.contributor.imecauthorMentens, Nele
dc.date.accessioned2023-08-11T07:49:44Z
dc.date.available2023-06-25T20:34:41Z
dc.date.available2023-08-11T07:49:44Z
dc.date.embargo9999-12-31
dc.date.issued2022
dc.description.wosFundingTextThis work is supported by CORNET and funded by VLAIO under grant number HBC.2018.0491. This work is also supported by Cybersecurity Initiative Flanders (VR20192203).
dc.identifier.doi10.1109/FPL57034.2022.00062
dc.identifier.eisbn978-1-6654-7390-3
dc.identifier.issn1946-1488
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/42088
dc.publisherIEEE COMPUTER SOC
dc.source.beginpage366
dc.source.conference32nd International Conference on Field-Programmable Logic and Applications (FPL)
dc.source.conferencedateAUG 29-SEP 02, 2022
dc.source.conferencelocationBelfast
dc.source.endpage374
dc.source.journal32nd International Conference on Field-Programmable Logic and Applications (FPL)
dc.source.numberofpages9
dc.subject.keywordsBINARY NEURAL-NETWORKS
dc.title

Feature dimensionality in CNN acceleration for high-throughput network intrusion detection

dc.typeProceedings paper
dspace.entity.typePublication
Files

Original bundle

Name:
Feature_dimensionality_in_CNN_acceleration_for_high-throughput_network_intrusion_detection.pdf
Size:
651.71 KB
Format:
Adobe Portable Document Format
Description:
Published version
Publication available in collections: