Publication:

Hybrid static-sensory data modeling for prediction tasks in basic oxygen furnace process

 
dc.contributor.authorSala, Davi Alberto
dc.contributor.authorVan Yperen-De Deyne, Andy
dc.contributor.authorMannens, Erik
dc.contributor.authorJalalvand, Azarakhsh
dc.contributor.imecauthorSala, Davi Alberto
dc.contributor.imecauthorMannens, Erik
dc.contributor.imecauthorJalalvand, Azarakhsh
dc.contributor.orcidimecSala, Davi Alberto::0000-0001-5158-8850
dc.contributor.orcidimecMannens, Erik::0000-0001-7946-4884
dc.date.accessioned2023-07-20T12:40:29Z
dc.date.available2022-11-24T03:11:24Z
dc.date.available2022-11-24T10:24:11Z
dc.date.available2023-07-20T12:40:29Z
dc.date.embargo2024-06-30
dc.date.issued2023
dc.description.wosFundingTextThe research leading to these results received funding from Flanders Innovation & Entrepreneurship (VLAIO) under Grant Agreement No HBC.2019.2173
dc.identifier.doi10.1007/s10489-022-04293-7
dc.identifier.issn0924-669X
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/40772
dc.publisherSPRINGER
dc.source.beginpage15163
dc.source.endpage15173
dc.source.issue/
dc.source.journalAPPLIED INTELLIGENCE
dc.source.numberofpages11
dc.source.volume53
dc.subject.keywordsSERIES
dc.subject.keywordsSTEEL
dc.title

Hybrid static-sensory data modeling for prediction tasks in basic oxygen furnace process

dc.typeJournal article
dspace.entity.typePublication
Files

Original bundle

Name:
DS572.pdf
Size:
1.59 MB
Format:
Adobe Portable Document Format
Description:
Published version
Name:
DS572_acc.pdf
Size:
1016.46 KB
Format:
Adobe Portable Document Format
Description:
Accepted version
Publication available in collections: