Publication:

A novel day-ahead regional and probabilistic wind power forecasting framework using deep CNNs and conformalized regression forests

 
dc.contributor.authorJonkers, Jef
dc.contributor.authorNieves Avendano, Diego
dc.contributor.authorVan Wallendael, Glenn
dc.contributor.authorVan Hoecke, Sofie
dc.contributor.imecauthorVan Wallendael, Glenn
dc.contributor.imecauthorVan Hoecke, Sofie
dc.contributor.imecauthorNieves Avendano, Diego
dc.contributor.orcidimecVan Wallendael, Glenn::0000-0001-9530-3466
dc.contributor.orcidimecVan Hoecke, Sofie::0000-0002-7865-6793
dc.contributor.orcidimecNieves Avendano, Diego::0000-0001-6215-6439
dc.date.accessioned2024-05-13T13:55:32Z
dc.date.available2024-04-14T16:53:35Z
dc.date.available2024-04-15T11:01:12Z
dc.date.available2024-05-13T13:55:32Z
dc.date.embargo2024-02-21
dc.date.issued2024
dc.description.wosFundingTextPart of this work was funded by the Flanders AI Research Program, Belgium and the COOCK Smart Ports 2025 project. COOCK Smart Ports 2025 is a project financed by VLAIO, Belgium that aims to transfer knowledge via pilot projects, whereas the Flanders AI Research Program is financed by the Flemish Government, Belgium.
dc.identifier.doi10.1016/j.apenergy.2024.122900
dc.identifier.issn0306-2619
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/43826
dc.publisherELSEVIER SCI LTD
dc.source.beginpageArt. 122900
dc.source.endpageN/A
dc.source.issueN/A
dc.source.journalAPPLIED ENERGY
dc.source.numberofpages18
dc.source.volume26
dc.subject.keywordsPREDICTION
dc.title

A novel day-ahead regional and probabilistic wind power forecasting framework using deep CNNs and conformalized regression forests

dc.typeJournal article
dspace.entity.typePublication
Files

Original bundle

Name:
DS751.pdf
Size:
2.34 MB
Format:
Unknown data format
Description:
Published version
Publication available in collections: