Publication:

Semantic Representation and Attention Alignment for Graph Information Bottleneck in Video Summarization

 
dc.contributor.authorZhong, Rui
dc.contributor.authorWang, Rui
dc.contributor.authorYao, Wenjin
dc.contributor.authorHu, Min
dc.contributor.authorDong, Shi
dc.contributor.authorMunteanu, Adrian
dc.date.accessioned2023-12-19T08:23:44Z
dc.date.available2023-08-11T16:46:11Z
dc.date.available2023-12-19T08:23:44Z
dc.date.embargo2024-01-13
dc.date.issued2023
dc.description.wosFundingTextThis work was supported in part by the National Natural Science Foundation of China under Grant 62002130 and Grant 62201222; in part by the Fundamental Research Funds for the Central Universities under Grant CCNU22QN014, Grant CCNU22XJ034, and Grant CCNU22JC007; in part by the National Key Research and Development Program of China under Grant 2022YFD1700204; and in part by Fonds Wetenschappelijk Onderzoek(FWO), Vlaanderen, under Project G094122N.
dc.identifier.doi10.1109/TIP.2023.3293762
dc.identifier.issn1057-7149
dc.identifier.pmidMEDLINE:37440397
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/42324
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
dc.source.beginpage4170
dc.source.endpage4184
dc.source.issue/
dc.source.journalIEEE TRANSACTIONS ON IMAGE PROCESSING
dc.source.numberofpages15
dc.source.volume32
dc.subject.keywordsNETWORK
dc.subject.keywordsLSTM
dc.title

Semantic Representation and Attention Alignment for Graph Information Bottleneck in Video Summarization

dc.typeJournal article
dspace.entity.typePublication
Files

Original bundle

Name:
TIP_final_manuscript_v3.pdf
Size:
5.73 MB
Format:
Adobe Portable Document Format
Description:
Accepted version
Publication available in collections: