Publication:

Uncertainty quantification for appliance recognition in non-intrusive load monitoring using Bayesian deep learning

 
dc.contributor.authorWerthen Brabants, Lorin
dc.contributor.authorDhaene, Tom
dc.contributor.authorDeschrijver, Dirk
dc.contributor.imecauthorWerthen Brabants, Lorin
dc.contributor.imecauthorDhaene, Tom
dc.contributor.imecauthorDeschrijver, Dirk
dc.contributor.orcidimecDhaene, Tom::0000-0003-2899-4636
dc.contributor.orcidimecDeschrijver, Dirk::0000-0001-6600-1792
dc.contributor.orcidimecWerthen Brabants, Lorin::0000-0001-9976-1886
dc.date.accessioned2022-09-27T10:11:48Z
dc.date.available2022-08-24T02:35:04Z
dc.date.available2022-09-05T10:05:20Z
dc.date.available2022-09-27T10:11:48Z
dc.date.embargo9999-12-31
dc.date.issued2022
dc.description.wosFundingTextThis research received funding from the Flemish Government under the "Onderzoeksprogramma Artificiele Intelligentie (AI) Vlaanderen" programme.
dc.identifier.doi10.1016/j.enbuild.2022.112282
dc.identifier.issn0378-7788
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/40294
dc.publisherELSEVIER SCIENCE SA
dc.source.beginpage112282
dc.source.endpagena
dc.source.issue/
dc.source.journalENERGY AND BUILDINGS
dc.source.numberofpages5
dc.source.volume270
dc.title

Uncertainty quantification for appliance recognition in non-intrusive load monitoring using Bayesian deep learning

dc.typeJournal article
dspace.entity.typePublication
Files

Original bundle

Name:
8142.pdf
Size:
705.62 KB
Format:
Adobe Portable Document Format
Description:
Publication available in collections: