Publication:
The STOIC2021 COVID-19 AI challenge: Applying reusable training methodologies to private data
| dc.contributor.author | Boulogne, Luuk H. | |
| dc.contributor.author | Lorenz, Julian | |
| dc.contributor.author | Kienzle, Daniel | |
| dc.contributor.author | Schoen, Robin | |
| dc.contributor.author | Ludwig, Katja | |
| dc.contributor.author | Lienhart, Rainer | |
| dc.contributor.author | Jegou, Simon | |
| dc.contributor.author | Li, Guang | |
| dc.contributor.author | Chen, Cong | |
| dc.contributor.author | Wang, Qi | |
| dc.contributor.author | Shi, Derik | |
| dc.contributor.author | Maniparambil, Mayug | |
| dc.contributor.author | Mueller, Dominik | |
| dc.contributor.author | Mertes, Silvan | |
| dc.contributor.author | Schroeter, Niklas | |
| dc.contributor.author | Hellmann, Fabio | |
| dc.contributor.author | Elia, Miriam | |
| dc.contributor.author | Dirks, Ine | |
| dc.contributor.author | Bossa, Matias Nicolas | |
| dc.contributor.author | Berenguer, Abel Diaz | |
| dc.contributor.imecauthor | Bossa, Matias Nicolas | |
| dc.contributor.imecauthor | Berenguer, Abel Diaz | |
| dc.contributor.imecauthor | Mukherjee, Tanmoy | |
| dc.contributor.imecauthor | Vandemeulebroucke, Jef | |
| dc.contributor.imecauthor | Sahli, Hichem | |
| dc.contributor.imecauthor | Deligiannis, Nikolaos | |
| dc.contributor.orcidimec | Mukherjee, Tanmoy::0000-0002-9540-5398 | |
| dc.contributor.orcidimec | Vandemeulebroucke, Jef::0000-0001-5714-3254 | |
| dc.contributor.orcidimec | Sahli, Hichem::0000-0002-1774-2970 | |
| dc.contributor.orcidimec | Deligiannis, Nikolaos::0000-0001-9300-5860 | |
| dc.date.accessioned | 2025-01-23T10:28:07Z | |
| dc.date.available | 2024-07-05T18:51:14Z | |
| dc.date.available | 2025-01-23T10:28:07Z | |
| dc.date.embargo | 2024-06-14 | |
| dc.date.issued | 2024 | |
| dc.description.wosFundingText | The European Regional Development Fund had no role in the study design, data collection, data analysis, data interpretation, or writing of the manuscript. Amazon Web Services funded algorithm evaluation, algorithm training for the Final phase, and prizes to the best performing teams. | |
| dc.identifier.doi | 10.1016/j.media.2024.103230 | |
| dc.identifier.issn | 1361-8415 | |
| dc.identifier.pmid | MEDLINE:38875741 | |
| dc.identifier.uri | https://imec-publications.be/handle/20.500.12860/44127 | |
| dc.publisher | ELSEVIER | |
| dc.source.beginpage | Art. 103230 | |
| dc.source.endpage | N/A | |
| dc.source.issue | October | |
| dc.source.journal | MEDICAL IMAGE ANALYSIS | |
| dc.source.numberofpages | 17 | |
| dc.source.volume | 97 | |
| dc.subject.keywords | SEGMENTATION | |
| dc.subject.keywords | CT | |
| dc.subject.keywords | ALGORITHMS | |
| dc.subject.keywords | PREDICTION | |
| dc.subject.keywords | VALIDATION | |
| dc.subject.keywords | DIAGNOSIS | |
| dc.subject.keywords | IMAGES | |
| dc.subject.keywords | AREAS | |
| dc.title | The STOIC2021 COVID-19 AI challenge: Applying reusable training methodologies to private data | |
| dc.type | Journal article | |
| dspace.entity.type | Publication | |
| Files | Original bundle
| |
| Publication available in collections: | ||