Publication:

Learned Parameter Compression for Efficient and Privacy-Preserving Federated Learning

 
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid0000-0002-3232-3029
cris.virtual.orcid0000-0001-9300-5860
cris.virtual.orcid0000-0002-1774-2970
cris.virtual.orcid0000-0002-0845-6155
cris.virtualsource.department5f4bab54-ed31-4450-9ab4-1a95f9dad043
cris.virtualsource.department90f2bec3-f84d-4738-9103-ba2cd2f04cbc
cris.virtualsource.departmentf869d5b4-4c3a-4052-af0a-3f6e6925edb3
cris.virtualsource.departmentba7b5bee-bb97-47de-a137-fd8e1a08d07a
cris.virtualsource.orcid5f4bab54-ed31-4450-9ab4-1a95f9dad043
cris.virtualsource.orcid90f2bec3-f84d-4738-9103-ba2cd2f04cbc
cris.virtualsource.orcidf869d5b4-4c3a-4052-af0a-3f6e6925edb3
cris.virtualsource.orcidba7b5bee-bb97-47de-a137-fd8e1a08d07a
dc.contributor.authorChen, Yiming
dc.contributor.authorAbrahamyan, Lusine
dc.contributor.authorSahli, Hichem
dc.contributor.authorDeligiannis, Nikolaos
dc.contributor.imecauthorChen, Yiming
dc.contributor.imecauthorAbrahamyan, Lusine
dc.contributor.imecauthorSahli, Hichem
dc.contributor.imecauthorDeligiannis, Nikolaos
dc.contributor.orcidextChen, Yiming::0009-0004-3705-5678
dc.contributor.orcidextAbrahamyan, Lusine::0000-0002-3232-3029
dc.contributor.orcidextDeligiannis, Nikos::0000-0001-9300-5860
dc.contributor.orcidimecChen, Yiming::0000-0002-0845-6155
dc.contributor.orcidimecAbrahamyan, Lusine::0000-0002-3232-3029
dc.contributor.orcidimecSahli, Hichem::0000-0002-1774-2970
dc.contributor.orcidimecDeligiannis, Nikolaos::0000-0001-9300-5860
dc.date.accessioned2025-04-14T12:38:09Z
dc.date.available2025-04-14T12:38:09Z
dc.date.embargo2024-06-03
dc.date.issued2024
dc.description.wosFundingTextThis work was supported in part by the Research Foundation - Flanders (FWO) through the Project under Grant G014718N; in part by the imec.icon Surv-AI-llance Project; and in part by the Flemish Government, under the "Onderzoeksprogramma Artificiele Intelligentie (AI) Vlaanderen" Programme.
dc.identifier.doi10.1109/OJCOMS.2024.3409191
dc.identifier.issn2644-125X
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/45531
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
dc.source.beginpage3503
dc.source.endpage3516
dc.source.issueN/A
dc.source.journalIEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY
dc.source.numberofpages14
dc.source.volume5
dc.title

Learned Parameter Compression for Efficient and Privacy-Preserving Federated Learning

dc.typeJournal article
dspace.entity.typePublication
Files

Original bundle

Name:
Learned_Parameter_Compression_for_Efficient_and_Privacy-Preserving_Federated_Learning.pdf
Size:
5.14 MB
Format:
Adobe Portable Document Format
Description:
Accepted version
Publication available in collections: