Publication:

Machine-Learning-Based Hybrid Random-Fuzzy Uncertainty Quantification for EMC and SI Assessment

 
dc.contributor.authorDe Ridder, Simon
dc.contributor.authorSpina, Domenico
dc.contributor.authorToscani, Nicola
dc.contributor.authorGrassi, Flavia
dc.contributor.authorVande Ginste, Dries
dc.contributor.authorDhaene, Tom
dc.contributor.imecauthorDe Ridder, Simon
dc.contributor.imecauthorSpina, Domenico
dc.contributor.imecauthorVande Ginste, Dries
dc.contributor.imecauthorDhaene, Tom
dc.contributor.orcidextToscani, Nicola::0000-0002-2671-6870
dc.contributor.orcidextGrassi, Flavia::0000-0001-6844-8766
dc.contributor.orcidimecVande Ginste, Dries::0000-0002-0178-288X
dc.contributor.orcidimecDhaene, Tom::0000-0003-2899-4636
dc.contributor.orcidimecSpina, Domenico::0000-0003-2379-5259
dc.date.accessioned2022-01-18T09:59:05Z
dc.date.available2021-11-02T16:07:13Z
dc.date.available2022-01-18T09:59:05Z
dc.date.issued2020
dc.identifier.doi10.1109/TEMC.2020.2980790
dc.identifier.issn0018-9375
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/38350
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
dc.source.beginpage2538
dc.source.endpage2546
dc.source.issue6
dc.source.journalIEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY
dc.source.numberofpages9
dc.source.volume62
dc.subject.keywordsPOLYNOMIAL-CHAOS
dc.subject.keywordsVARIABILITY ANALYSIS
dc.subject.keywordsGLOBAL OPTIMIZATION
dc.subject.keywordsMULTIPORT SYSTEMS
dc.title

Machine-Learning-Based Hybrid Random-Fuzzy Uncertainty Quantification for EMC and SI Assessment

dc.typeJournal article
dspace.entity.typePublication
Files

Original bundle

Name:
Machine-Learning-Based_Hybrid_Random-Fuzzy_Uncertainty_Quantification_for_EMC_and_SI_Assessment
Size:
398.17 KB
Format:
Unknown data format
Description:
Not Applicable (or Unknown)
Publication available in collections: