Publication:

Sparse random neural networks for online anomaly detection on sensor nodes

 
dc.contributor.authorLeroux, Sam
dc.contributor.authorSimoens, Pieter
dc.contributor.imecauthorLeroux, Sam
dc.contributor.imecauthorSimoens, Pieter
dc.contributor.orcidimecLeroux, Sam::0000-0003-3792-5026
dc.contributor.orcidimecSimoens, Pieter::0000-0002-9569-9373
dc.date.accessioned2024-01-11T14:56:59Z
dc.date.available2023-06-30T21:08:52Z
dc.date.available2023-07-05T05:31:21Z
dc.date.available2024-01-11T14:56:59Z
dc.date.embargo2025-07-31
dc.date.issued2023
dc.description.wosFundingTextThis research received funding from the Flemish Government, Belgium under the "Onderzoeksprogramma Artificiele Intelligentie (AI) Vlaanderen" programme.
dc.identifier.doi10.1016/j.future.2022.12.028
dc.identifier.issn0167-739X
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/42111
dc.publisherELSEVIER
dc.source.beginpage327
dc.source.endpage343
dc.source.issueN/A
dc.source.journalFUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE
dc.source.numberofpages17
dc.source.volume144
dc.subject.keywordsWEIGHTS
dc.title

Sparse random neural networks for online anomaly detection on sensor nodes

dc.typeJournal article
dspace.entity.typePublication
Files

Original bundle

Name:
8239.pdf
Size:
1.78 MB
Format:
Unknown data format
Description:
Published version
Name:
Sparse_random_open_access_.pdf
Size:
1.65 MB
Format:
Adobe Portable Document Format
Description:
Accepted version
Publication available in collections: